Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Health Res ; : 1-17, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-2077382

ABSTRACT

Synthetic polymers with additives are used in the manufacturing of face masks (FMs); hence, FMs could be a potential source of exposure to phthalic acid esters (PAEs). India stands second in the world in terms of the FMs usage since the beginning of Covid-19 pandemic. However, little is known about the PAEs content of FMs used in India. Some PAEs, such as DEHP and DBP are suspected endocrine disrupting chemicals (EDCs); hence, wearing FM may increase the risk of exposure to these EDCs. In this study, we collected 91 samples of FMs from eight Indian cities and analyzed for five PAEs viz. DMP, DEP, DBP, BBP, and DEHP. The PAEs contents in FMs ranged from 101.79 to 27,948.64 ng/g. The carcinogenic risk of N 95 with filter, N-95, and cloth masks was higher than the threshold levels. The findings indicate the need to control PAEs in FMs through regulatory actions.

2.
Environ Sci Pollut Res Int ; 29(10): 14830-14845, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1460449

ABSTRACT

The COVID-19 pandemic has resulted in the massive generation of biomedical waste (BMW) and plastic waste (PW). This sudden spike in BMW and PW has created challenges to the existing waste management infrastructure, especially in developing countries. Safe disposal of PW and BMW is essential; otherwise, this virus will lead to a waste pandemic. This paper reviews the generation of BMW and PW before and during the COVID-19 pandemic, the regulatory framework for BMW management, policy interventions for COVID-19-based BMW (C-BMW), the capacity of BMW treatment and disposal facilities to cope with the challenges, possible management strategies, and perspectives in the Indian context. This study indicated that policy intervention helped minimize the general waste treated as C-BMW, especially during the second pandemic. Inadequacy of common BMW treatment facilities' (CBMWTFs) capacity to cope with the BMW daily generation was observed in some states resulting in compromised treatment conditions. Suggestions for better management of BMW and PW include decontamination of used personal protective equipment (PPEs) and recycling, alternate materials for PPEs, segregation strategies, and use of BMW for co-processing in cement kilns. All upcoming CBMWTFs should be equipped with higher capacity and efficient incinerators for the sound management of BMW. Post-pandemic monitoring of environmental compartments is imperative to assess the possible impacts of pandemic waste.


Subject(s)
COVID-19 , Medical Waste , Waste Management , Humans , Incineration , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL